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Abstract

The structure of electrostatic oscillations is determined for a

cold plasma with a zero order density gradient along the magnetic field.

A set of well-behaved structures, bounded at plasma resonance, exists for

discrete values of perpendicularAwavenunber. Under these conditions the
plasma acts as a waveguide. A Green's function suitable for sources
located in the overdense region of the plasma is constructed from these

waveguide~like solutionj)k\
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I. Introduction

Magnetized plasmas with a zero order density gradient (VNO) along the
magnetic field (B o) can support a rich variety of electrostatic oscillatioms.
The variety of mode structures in this geometry arises from the close juxta-
position of the plasma (wp) and upper hybrid (muh) resonances for wave fre-
quencies w greater than the electron gyrofrequency 2, as sketched in Fig. 1.
The majority of theoretical studies have concentrated on two extreme cases.
Either the plasma is ummagnetized (§°-0) and the electrostatic structure
associated with the plasma resonance is studied, or the demsity gradient is
perpendicular to the magnetic field (VN°°§ 0-0) and the electrostaticlvstruc-
tures around w.p are investigated. Each of these two cases has received
considerable theoreticsl'’? and a:perimentall »3 attention and numerous interesting
effects have been found for each case. |

In the geometry considered here (VN || B o) the effects of both reso-
nances must be considered simultaneously. In fac;, WKB analysis of a wave
propagating obliquely to ljo hd:lcates that the upper hybrid resonance is
actually a cutoff for parallel wavenumber (k,=0) while the plasma resonance
is a true resonance (in that k, + =), Due to the coupling between the mp
and ®.h points and the need to consider mode conversion near the wp pdint,
the general problem of wave excitation by an external source is rather com-
plicated both physically and mathematically. Although we have made some
progress towards a solution of the general problem we concentrate our atten-
tion here on a rather specific but interesting aspect of the electrostatic mode
structures. Specifically, we concentrate on a description of new, purely
cold, mode structures which are supported by the plasma for a discrete set

of perpendicular wvavemmbers satisfying the conditionm,

-

ot A W N 2. IR - S T O T S S L S,
L NP Sl S Sl A A A S A R A VLSRR T3 IS S A TS S S . AT Tt e T 0 ey .




ATl SOt
.

Koz = [1 - @123 + 1)
j=0,1,2,...

(1)

Where Az refers to the distance between the upper hybrid and plasma resonance
points and ! is the electron gyrofrequency. These modes are trapped in
the region between the'up and ®.h points. The wave energy propagates acrbss
the magnetic field and the region behaves as a waireguid‘e. We demonstrate that
exact solutions to the cold plasma differential equation can be found that
are well behaved when the condition given in Eq. (1) is satisfied. With these
solutions we construct a Grc;n's function .lluiuble for sources located in
the overdense region of the plasma (w < up). .

Aside from the intringic interest of the quantized mode structures,
their existence can be of relevance to the understanding of resomant absorp-
tion of radio waves .:I.n the auroral ionosphere or in certain laboratory devices.
In addition this study gives a clear example of a mode structure which de-
pends explicitly upon the plagma inhomogenity and is not contained in the

WKB description which typically forms the basis for physical intuition.
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II. Mode Structure

Consider an electrostatic oscillation propagating in an inhomogeneous
plasma in which the zero order density gradient points along the magnetic

field with a waveform given by
¢ = ¢(2) exp[i(klx - wt)] + c.c. (2)

The direction along the gradient is denoted by z while x denotes the direction
perpendicular to it, as illustrated in Fig. 1. The spatial structure of
L

¢ (2) is determined by Poisson's equation
3, (end #) - Ky%e 9 = 5(2) ®

vhere the perpendicular and parallel components of the dielectric temnsor are

€; and €,, respectively. In a cold plasma with varying electron density
e, =1~ mpz(:z)/(m2 - nz) } €p=1-~ mpz(z)/w2 (4)

where wpz(z) - lmezNo(z)/m with e,m the electron charge and mass. In Eq. (3),
S$(z) represents a source of oscillations at frequency w which may consist,
for example, of externally driven grids immersed in the plasma or of charge
oscillations induced on the density gradient by a remotely launched electro-
magnetic wave. Regardless of the particular nature of the source the

systea ruponl; can be found by solving Eq. (3) with an idealized delta
function driver. Mathematically, this is equivalent to solving for the

Green's function. Once the Green's function has been found the system response

.......................
.......




to an arbitrary source can be calculated.

The Green's function for Eq. (3) can be constructed from linear combin~
ations of the solutions to the corresponding homogeneous equation (i.e. S(z)=0)
which satisfy the proper boundary conditions. To obtain solutions to the
homogeneous equation we consider u density profile which varies linearly

with z in the region of interest. The dielectric components then take the

form
| 2 2
en ®z/L; €, = (z/L - Y)/(1 - Y9) (5)

vhere ¥ = @/w and L is the demsity scale length. The point z = 0 now

.corresponds to plasma resonance w = wp. The overdense region of the plasma

corresponds to z < 0, and the upper hybrid cutoff is located at z = I.Yz.

Since we assume » > 2, Y < 1 and we introduce the dimensionless quantities
£ = 2|k, |2/l - YHY (6a)
and
B = |k, L Y2201 - YD (6b)
8o that the homogeneous form of Eq. (3) becomes
d, _d
) - /4 -8 =0 ™

Using the transformation

$(E) = £(5) exp(~£/2) (8)
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Eq. (7) becomes

2
d df
5 f+(1-E) g+ (B-Y%)£=0 (9
dg2 dg

Eq. (9) has the form of Kummer's differential equation which has two independent
solutions usually denoted by U(a,b,) and M(a,b,E). The two independent para-
meters a and b here have the values a = % - 8 and b = 1. Since the Wronskian
of U and M 1is zero for cc;.rfain values of a and b we use a different com-

bination of linearly independent solutions to construct the Green's functionm.

In the notation of Slaterl', the solutions we use are

75 = U(&,b,£) | (10)
and

y, = e*U(b-a,b,-E)
The Wronskian of Y% and % is, for real &

w(ys.,y7) - E_bap[; + ir(a -~ b)] (11)

which is not zero for any finite value of a or b.

The Green's function is a solution to the equation (with o = 1)

d d
AEL6aEC(E-E,)] = (E/4 - BIG(E,E ) = ~4woLS(E - § ) (12)

where o is the effective charge density per unit area of the source.




A solution to Eq. (12) can be constructed using linear combinations

of the solutions to the homogeneous Eq. (7) on either. side of the

source. We denote these combinations by

-’ - : - 13
G, cllexp( 5/2))'5 + clzexp( E/Z)Yz (13)

wve
o™

v
v

and

) = . - £ - . 14
G, czlexp( 5/2.)y5 + czza:p( 1‘,'/2)y7 (14)

wse
™

A
oy

The solutions G, and G . must satisfy the following -conditions to form
a physically acceptable Green's function:

1) They must be continuous at § = £
G, (E) = G (E) (15)

2) The derivative at £ = go must satisfy

&, do, noL
T ®|,., "Te (16)
E=t, o

3) Both G, and G_ must vanish as |€]+ » and,

4) G> and G< must be bounded for real £.

To address point 3 we consider the asymptotic behavior of the function U.
For [E] + =

U(s,b,8) » (8)7° - 17
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Using Eq. (17) the asymptotic behavior of the components of G> and G . are

exp(-£/2)y_ + exp(-£/2) ()8 (18a)

and

exp(-£/2)y_ > exp(+£/2) (-5) B (18b)

where we have used the values of a and b appropriate for Eq. (9). From Eq. (18)

it is clear that in order for G, and G_ to vanish as |[g] + =

c,,=c, =0 (19)
Thus the Green's function must be constructed from

G, = cjjexp(~E/2)y, 3 E>¢E (20a)

G, =c,, exp(»-&/Z)y-., H E<& (20b)

In considering the boundedness of the solutions (point 4) the behavior
of the solutions at plasma resonance (£ = 0) is crucial. For the case under

consideration (b = 1) the behavior of the functions U(a,l,E) for £ << 1 1is
U(a,1,§) = = 1n £/r(a) (21)
]

The logarithmic singularity for solutions near .the origin when I'(a) is finite

apparently indicates the buildup of charge near the resonant layer. In this
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case, the solutions G> and G< of Eq. (20) can not be used te construct a
physically acceptable Green's function. This situation indicates that the
cold plasma description is inadequate to describe the physical processes
occurring near the resonance layer. Thermal terms must then be retained to
adequately describe the plasma. However, Eq. (21) suggests the possibility
of obtaining physically acceptable solutions when I'(a) = 0, i.e. whenever
a 1s zero or a negative integer. Physically this implies it is possible to obtain
a purely cold mode which vanishes at :I.nfinity and is bounded at plasma reso-
nance.

The parameter a can indeed have zero or negative integer values for
certain perpendicular wavemumbers. Thus we expect bounded solutions to exist

whenever a =% - g = -j (j = 0,1,2,...). Using Eq. (6b) to express this con- ‘j::

dition in terms of physical variables, k, must satisfy ,g
At

2 3

lk_,_lL = (25+1)(1 ~-Y )15/172 (22) ]

5]

For these discrete or ~mantized values of k;, the Kummer function U(a,l,£) H;
:

beccmes a polynomial, namely,

U(-3,1,6) = -DIgr L) (23) s
where LJ (£) 1s the jﬂ, zero order Laguere polynomial which is, of course, ‘;’.‘
finite at the origin. Since the parameter B is a positive quantity the solution
G, which is proportional to U(B#Hg,1,-£) is not bounded at the origin.

Thus in addition to 'satisfying Eq. (22) we must also require, for a bounded

Green's function, that the source be in the overdense region of the plasma,

............
-----------------
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(1.e. Eo < 0) as illustrated in Fig. 2. Thus the solutions G> and G, vanish

at infinity and are everywhere bounded for a = -j and Eo < 0, in which case

2
e - - _1yJ
FP G, °, exp(-£/2) (-1)-3! Lj(E) (24a)
3 | G, =c exp(-£/2) Lj(E) H £>8
;l: and
! 6 = ¢, exp(-E/2)y, (24b)
2 G, =c, exp(-=£/2UIH,L-E) ;  E<E,
g
é The constants c1 and c2 can be found using Eqs. (15) and (16). From
Eq. (15) we find ¢
e, =ec ep(g ) L (-[g /UL ED (23)

The derivatives of G and G_at § = -f = IEOI are

6; = c exp(lg,|/2) [-5 1,-lg, 1) + 1y¢-lg, D] (26a)
: 6 = ¢ exp(-|e |/D[3 U0, LI D) + UG, g )] (26b)
5 where the prime indicates a derivative with respect to £. Inserting Eqs. (26a)

and (26b) in Eq. (16) and using Eq. (25) for c2 together with the expression for
the Wronskian [Eq. (11)] we obtain

A I S

e = -4moL exp[-|g [/2](31) U (34,1, [E ) (27a)

-
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and

c, = ~4nol expl |2 ]/2](31) Lj(-IEol) (27b)

Using Eqs. (27a,b) the Green's function appropriate for sources on the over-

dense side at discrete values of |k,| 1s

G, = =(31) 4ol U(IH1,1,[E |) Ly(8) expl-(E - £)/2] 5  (28a)

£>¢g =-|g |

.

G, = -1 dmoL Ly(-g ) U(I#1,1,-8) expl(€ - € )/2] 5  (28b)

E<E <O
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I1I. Discussion

It has been demonstrated that for:certain discrete values of perpen~-
dicular wavemmber, it is possible to construct a Green's function for electro-
static modes in a magnetized cold plasma with a longitudinal density gradient.
The sources must be located in the overdense region of the plasma. An ex-
ample of the Green's function for j = 3 in Eq. (22) is shown in Fig. 3.

The Green's function is oscillatory in the region between plasma resonance
and the upper hybrid cutoff point beyond which it decays exponentially as
expected from WKB analysis. In the overdense region of the plasma the Green's
function decays exponentially away from the source. Viewing the Green's
function as representing physically a grid immersed in the plasma driven by

a constant current source of amplitude -iwc it is clear that the plasma
response is purely capacitive. The capacitive impedance of the plasma, which
can be found from Eqs. (28a) or (28b), yields an effective plasma capacitance

per unit area, C/A, given by

©/m™ = (31) 4nL Ly (=g ) BGsH,L,[E ) (29)

This expression illustrates that the plasma response depends upon the zero
order density gradient scale length and the details of the electrostatic mode
structure,

At this point it is worth noting that the retention of terms resulting
from changes in the parallel component of the plasma dielectric is crucial to
obtaining these results. Neglecting the term in Eq. (3) proportional to

3zc.. leads to erroneous results in at least two ways. First the behavior
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of the electrostatic modes near resonance would be found to diverge at

1

nonquantized values of |k,| as z = rather than the correct ln(z) divergence.

v e
s ee s a s
Lk RN

This illustrates that near resonance the plasma can not be treated as locally

homogeneous. Second, the differential operator would be non-adjoint and

any subsequently derived Greemn's function would be incorrect and more diffi- !
cult to obtain than the correct one. ;
The Green's function presented here, which is derived from the cold :J
plasma equations, is valid only for discrete values of k, at which the ':
quantity I'(a) 1s infimite. At other values of |k,| the solutions to the ‘
cold plasma differential equation have. a logarithmic singularity at plasma j
resonance. Actually, however, the amplitude of the electrostatic oscillationsa "
remains finite at resonance because the plasma has a non-zero temperature.
Temperature dependent effects lead to the excitation of Bohm-Gross modes near __
plasma resonance. These thermal modes carry energy down the density gradient ’
awvay from resomance and thus limit the amplitude. Such a mode conversion pro-
cess is described mathematically by the fourth order differentisl equation that j
arises from Eq. (3) if thermal terms are retained in ¢,,. The investigation of *
the solutions to the fourth order equation is the subject of another papers but ‘
for completeness, ve note here that the ratio of the amplitude of the hot J
mode generated near resomance to the cold mode away from resonance is pro- '1
portional to 1/I(a). Thus the amplitude of the hot mode is zero at the 1
quantized values of |k,|, consistent with the results presented here. 1
As we have indicated the source of excitation must be in the over- -’
dense region of the plasma. Even at th.l quantized values of |k,_| purely
cold solutions can not be constructed for the source in the underdense region




because of the inherent singularity at resonance in the solutions U(B+s,l1,-£).
The problem is quite clearly not symmetric. Obtaining a suitable expression
for the Green's function for Eo > N again requires the retention of thermal
effects. The solutions to the fourth order differential equation remain
bounded at the resonance becauge of production of hot modes through mode
conversion. However, finding the Green's function in this case is much more
complicated because four modes rather than two can be excited in the plasma.

We are currently investigating this rather complex problem.

The suppression of mode conversion at discrete values of |k,| means

that the plasma acts essentially as a loss-free waveguide. The wave energy

is transported perpendicular to the field lines and density gradiemt. The
long wavelength cold modes are not subject to Landau damping whereas the short
wvavelength Bolm-Gross modes created through mode conversion are. The experi-
mental investigation of the waveguide-like property of the plasma can be
carried out in present laboratory devices or the effect may be observable in
absorption experiments conducted in the auroral ionosphere.

| From the limited study reported here it is evident that fundamental

differences exist between resonant absorption in a magnetized and ummagnetized

plasma. In the umagnetized plasma short wavelength Bom-Gross modes are
excited by direct coupling of external electromagnetic energy to plasma reso-
nance. In the magnetized plasma excitation of Bom-Gross modes can take
place indirectly through mode comrers:lon. from cold modes and is suppressed for
certain angles of propagation. Thus the introduction of a magnetic field in
the plasma produces not just a change in the angular dependence of Bolm-Gross
excitation but introduces a fundamentally different physical mechanism for

the production of these modes.

- T e e Tt
PO A I
0. P R

. - " .




1 This work has been supported by the Office of Naval Research.
:
;

- at et u*. . . Lt e et RN - L .
. e " B e Lt . e e e e, Ve L

’-".f.d',f‘n_‘,r.f_r,r,r.-—-. N
e Y N IR IR IR I
PN AR P P L




1.

3.

4.

5.

3 P SRR P

» a2
i DR PP

Ty
1.

Bibliography

For bibliography of recent theoretical and experimental studies of
the plasma resonance consult cummulative index of Phys. Fluids,
Vol. 19-23 (1976-1980), p. 62.

For a bibliography of theoretical studies of upper hybrid resonance
see M. Shoucri and H.H. Kuehl, Phys. Fluids, 23, 2461 .(1980).

For a bibliography of experimental studies of upper hybrid resonance
see H. Sugai, Phys. Rev. Lett., 47, 1899 (1981).

L.J. Slater, in "Handbook of Mathematical Functions", edited by
M. Abramowitz and I.A. Stegun (Dover, New York, 1965), p. 504.

Maggs, J.E. and G.J. Morales, PPG-565, Center for Plasma Physics and
Fusion Engineering, UCLA, Los Angeles, CA, June, 198l.

e




Figure Captions

Figure 1. Schematic of geometry considered in this study. The plasma
density gradient VN points along the magnetic field B,. With
o > @, the plasma resonance point at mp is near the upper hybrid
point, ®h°

Figure 2. Schematic indicating the relative location of the source, plasma
resonance, wp, and upper hybrid cut-off, ® To obtéin bounded
cold solutions the driving source must be located in the over-

dense region (wp > w). No is the plasma density.

Figure 3. Example of spatial dependence of a cold waveguide Green's function
for 3 = 3. The location of the source, plasma resonance, up, and
upper hybr:!.d cut-off, 8. are indicated. The mode is finite
everywhere and oscillatory between the mp and ®ih po:l;nts. ¢8 is

an arbitrary scaling factor.
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